

About HPI

 HPI Computer Graphics Systems Department Information Visualization Geo **Software** Visualization Visualization **Real-Time Rendering**

About HPI

• InfoVis|SoftVis|GeoVis: Map-based visualization strategies and techniques

(Source: Software Diagnostics, www.softwarediagnostics.com)

1 Motivation

HPI

1 Motivation

Photorealistic (2D+3D Geospatial) Visualization

- · 3D Modeling and Texturing
- · Real-Time 3D Rendering
- Perspective Projections

Visualization Goals:

- "...gaining insights..." (into non-simple structures, relations, etc.)
- "...making something visible to the human mind..." (not to the eyes only)

Lack of Abstraction

- Information density (e.g., visual clutter, occlusion, ambiguity)
- Conceptually difficult blending with georeferenced/geospatial thematic information

1 Motivation

Technology that Shapes

• Systems, applications, and tools define to a (rapidly growing) significant degree the scope of our –personal and professional– processes and their methodology.

1 Motivation

Rapid Growth of 3D Computer Graphics as a Ubiquitous Technology

- · Massive parallel processing power
- Available on mobile devices, supported by web browsers, and (effectively) standardized
- Long-term strategic development, e.g. OpenGL, OpenGLSL, OpenGLES (www.opengl.org)

HPI

1 Motivation

Rapid Growth of 3D Computer Graphics as a Ubiquitous Technology

- · Massive parallel processing power
- Available on mobile devices, supported by web browsers, and (effectively) standardized
- Long-term strategic development, e.g. OpenGL, OpenGLSL, OpenGLES (www.opengl.org)
- "Programmable Shader Stages" the technical back bone

```
out vec4 v4FragmentColor;
// shader entry point
void main(void)
  // sampling 2D texture using texture coordinates
  vec4 v4Diffuse = texture(textureAlbedoRGB, DataIn.texCoords);
  // set the specular term to black
  vec4 spec = vec4(0.0);
  // normalize both input vectors
  vec3 n = normalize(DataIn.normal);
  vec3 e = normalize(vec3(DataIn.eye));
  // compute local intensity
  float intensity = max(dot(n,1 dir), 0.0);
  // if the vertex is lit compute the specular color
  if (intensity > 0.0)
        // compute the half vector
        vec3 h = normalize(l dir + e);
        // compute the specular term into spec
        float intSpec = max(dot(h,n), 0.0);
        spec = specular * pow(intSpec,shininess);
  }//endif
  v4FragmentColor = max(intensity * v4Diffuse + spec, ambient);
  return;
```


Abstracting geospatial geometry by multiperspective views

- "bended maps", similar to panorama maps
- interactive 3D rendering
- 3 zones: near, middle, far, each with own styling

Multiperspective Views for Maps

Sebastian Pasewaldt

Matthias Trapp

Tassilo Glander

Haik Lorenz

Markus Jobst

Jürgen Döllner

Hasso Plattner Institut www.HPI3D.de

www.hpi3d.de

2 Multiperspective Views

Characteristics of multiperspective views

- Exhaustive screen space usage
- Focus-&-context areas
- Control of visual clutter (perspective compression)

Multiperspective View

2 Multiperspective Views

Level-of-Detail (LOD):

3 Level-of-Abstraction (LOA)

- Multiresolution representations of one given, high resolution 3D model
- LODs aim at efficient computer graphics representations, providing the same appearance at different computer graphics resolution levels

Level-of-Abstraction (LOA):

- Multiple representations of one given, high resolution 3D model, generalized with respect to geometry, appearance, and semantics.
- LOAs aim at effective communication of complex models, providing different levels of abstraction having different geometry, topology and appearance.
- Typical range: map signature, 2D icon, simplified 3D model, high-res 3D model

LOD ≠ LOA

HPI

3 Level-of-Abstraction (LOA)

- How to compute different LOAs for a given 3D model?
- How to select LOA models in a context-dependent way?
- How to seamlessly switch among them during interaction?

3 Level-of-Abstraction (LOA)

- Iconic visualization of landmarks, e.g., for localization, orientations, and navigation tasks
- Landmarks are deformed and rotated such that its "best view" and user's viewing direction match
- Best view information approximated using *viewpoint entropy*

3 Level-of-Abstraction (LOA)

Detailed visualization (no highlighting)

Highlighted circular region-of-interest

Highlighted route

Saliency Map

10.12.14

4 Cartographic Rendering Techniques

■ Goals

10.12.14

- Express "uncertainty"
- Highlight structures and features
- Reduce visual noise
- Enable high compression rate for facade textures
- Dominant color tone detection on photorealistic facade textures
- Colorization according to dominant colors
- Edge detection on textures to integrate structural information in visualization

- Colorization of Facades
- (Re-)colorize facade textures according to dominant colors
- Reduces color palette and visual noise, and improves feature contrasts in visualization
- Enables high compression rate for abstracted facade textures

Solar Potential

Solar Potential + Difference of Gaussians

5 Cartographic Rendering

5 Cartographic Rendering System

10.12.14

ABSTRACTION | JÜRGEN DÖLLNER | WWW.HPI3D.DE

5 Cartographic Rendering System

10.12.14

ABSTRACTION | JÜRGEN DÖLLNER | WWW.HPI3D.DE

32

5 Cartographic Rendering Implementation

6 Example: Illustrative Maps

(City of Nuremberg, M. Merian, Topographia Germaniae, Edition Topographia Franconiae, 1642)

6 Example: Illustrative Maps

Conclusions

- Rapid progress in capacity, programmability, and availability of computer graphics (GPUs) enables specific graphics solutions for interactive cartographic information display
- Abstraction is supported by a large number of "nonphotorealistic" or "illustrative" rendering techniques
- Abstraction is a key element for design and implementation of such future map-based/map-related services and applications
- Abstraction does not automatically solve the many issues with 3D geospatial data visualization (e.g., details, orientation, navigation, information clutter, ...)

www.hpi3d.de
www.3dcontentlogistics.de
www.motionintelligence.net www.digitalmasterpieces.com

