

Depiction of Multivariate Data through Flow Maps

Alberto Debiasi, Bruno Simões, Raffaele De Amicis

28 November 2014

Data

- Geographical data, origin-destination data.
- Examples: migration, GPS tracklog analysis, interaction between actors in social networks, movements of goods, etc...

Origin Name	Origin Position	Destination Name	Destination Position	Attr. 1 (# migrants)	Gender		Ethnicity		
					Attr. 2 (# males)	Attr. 3 (# females)	Attr. 4 (# Asian)	Attr. 5 (# Caucasian)	
Italy	44.902 <i>,</i> 10.806	Portugal	40.014, -8.416	120	100	20	26	42	
Germany	50.652 <i>,</i> 9.971	Italy	44.902, 10.806	57	25	32	21	13	
Spain	40.061 <i>,</i> -3.760	Germany	50.652, 9.971	59	30	29	32	23	

1

Representations for OD-Data

Challenge

Develop a static and simple representation

to depict spatial origin-destination data with multiple attributes. The requirements fulfilled by our approach can be clustered in two groups:

- Constraint requirements
- Analytical requirements

Challenge

Develop a static and simple representation

to depict spatial origin-destination data with multiple attributes. The requirements fulfilled by our approach can be clustered in two groups:

- Constraint requirements:
 - The mapping must be static.
 - The information must be depicted on a limited space (e.g. the computer screen or a page on a newspaper) in such a way that it is clearly understandable by the viewer.
 - The number of visual primitives must be minimized to reduce the cognitive overload.
- Analytical requirements:
 - Possibility to reason about the geographic patterns.
 - Must enable, simultaneously, the visualization of the flow structure and its multivariate patterns.
 - Possibility to analyse the outliers and commonality between each destination.
 - Possibility to analyse the outliers and commonality for groups of moving entities.

Good candidate

 Flow map is a static representation that is suitable to communicate univariate spatial origin-destination data.

Our Approach

 We propose a new approach that capitalizes on the aggregation feature of flow maps, and on the value of color techniques.

Our Approach: Color models

 Our work employs a technique designed by Gossett et al. (Gossett & Chen, 2004); inspired by paint mixing using a subtractive color space with Red, Yellow and Blue as primary colors.

Our Approach: Color models

 Our work employs a technique designed by Gossett et al. (Gossett & Chen, 2004); inspired by paint mixing using a subtractive color space with Red, Yellow and Blue as primary colors.

Our Approach: Color models

- Generating a large number of colors from a limited range of values can be challenging. If users cannot distinguish between colors then they cannot perceive the magnitude of the value it represents.
- Hence, in our work, we normalize each primary color interval using their minimum and maximum value

Implementation

 Our approach extends the existing algorithms for the automatic generation of univariate flow maps.

Automatic generation of flow map

Algorithms for the automatic generation of flow maps creating a tree structure:

• Flow Map Layout – Phan et al. 2005

Flow Map Layout via Spiral Trees – Verbeek et al. 2011

- Supervised Force Directed Algorithm for the Generation of Flow Maps Debiasi et al. 2014
- Stub Bundling and Confluent Spirals for Geographic Networks - Nocaj et al. 2014

Implementation

 We propose a new approach that capitalizes on the aggregation feature of flow maps, and on the value of color techniques.

 The algorithm for the automatic generation of flow map returns a tree structure composed by the origin (the root), the intermediate nodes, and the destinations (the leaves).

Our Approach: Nodes representation

- In Flow maps an optional feature is the circle used to represent the destinations.
- It can help to better identify the target of the flows, and its size can be used to communicate the magnitude of an attribute.

Our Approach: Nodes representation

- The primary colors that compose the flow line are used to create the pie chart.
- The root node is represented as a pie chart depicting the percentage of each attribute from the whole amount of moving entities.

Migrants from California

Migrants from California

Migrants from Colorado

Migrants from Colorado

Migrants from Texas

30<age<54

Migrants from Texas

Conclusion

- A color scheme blending is used in conjunction with the aggregation aspects of flow maps and pie charts, to visualize in a static representation spatial origindestination data with multiple attributes.
- The presented method is independent to the algorithm used for automatically generate univariate flow map.
- To further validate our work a user study must be performed.

Thank you for the attention!