

Using Location-Based Social Media for Ranking Individual Familiarity with Places

A Case Study with Foursquare Check-in Data

Wangshu Wang

Outline

- Introduction and research objective
- Methodology
 - Identifying individually meaningful places
 - Ranking individual familiarity with places
- Conclusions and future work

1. Introduction and research objective

1.1 Introduction

- Meaningful place
 - A place that is associated with certain activities and meanings
- Individual familiarity with a place
 - How familiar is a place to an individual
 - Can be inferred as visiting frequency, the extensity and intensity of the experiences
- Location-based services adapted to individual priori spatial knowledge

1.2 Research objective

- This research aims at ranking individual familiarity with places using Foursquare check-in data.
 - Identifying individually meaningful places
 - Ranking individual familiarity with places



2. Identification of individually meaningful places: comparison of existing clustering algorithms

2.1 Methodology

- Clustering user's check-ins to find out potential personal meaningful places
- Comparison of existing clustering algorithms
 - SLINK
 - K-means
 - DBSCAN
 - EM algorithm for Gaussian mixture model

2.2 Evaluation

• Study design:

- 12 participants
- Users' check-in histories
- Their provided meaningful places lists , each place is a cluster of check-ins

• Evaluation metrics:

Precision, recall, tolerance factor and F1-score

2.3 Results

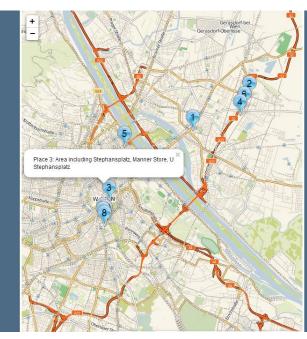
Algorithm	Precision	Recall	Tolerance Factor	F1-score	Precision + Tolerance Factor
SLINK	0.516	0.647	0.281	0.574	0.797
K-means	0.672	0.441	0.134	0.533	0.806
DBSCAN	0.631	0.520	0.286	0.570	0.917
EM	0.537	0.353	0.119	0.426	0.656

- The algorithms' performances vary on different data sets, i.e., different distribution of the data points
- In general, DBSCAN balanced the best among the four algorithms.

3. Ranking individual familiarity with places

3.1 Methodology

- Influencing factors of the familiarity with a place: visiting frequency, the extensity and intensity of the experiences
- **Frequency**: Foursquare check-ins
- **Extensity**: impractical to estimate
- Intensity : weight each check-in by user's tagging activities ("shout", "photos" and "like")
 - Each check-in has an initial weighting of 1;
 - "shout", "photos" and "like" inside a check-in item each weights 1;
 - The weighting of a check-in is at least 1 and can sum up to at most 4.
- Ranking the discovered places according to their weightings



3.2 Evaluation

- Study design:
 - 23 participants
 - User's ranking of the discovered places
 - Comparison with random rankings

• Evaluation metrics

- Spearman's rank
 correlation coefficient (ρ)
- Paired t-test

Discovered Places

Based on your Foursquare checkin history, the following places(areas) are discovered. The place numbers are randomly assigned and are corresponding to the marker numbers on the map.

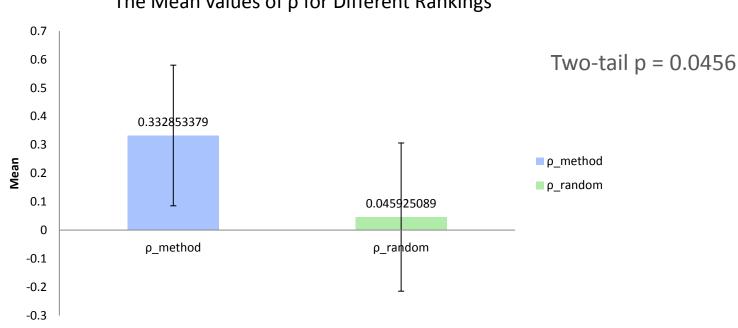
Place 1: Area including Donauzentrum (26A, 93A, N25) (Austria) , Starbucks Kiosk im Donauzentrum (Wagramer Straße 81, 1200, Wien, Austria)

Place 2: Area including Rautenweg (Austria)

Place 3: Area including Stephansplatz (Stephansplatz, 1010, Vienna, Austria), Manner Store (Stephansplatz, Wien, Austria), U Stephansplatz (Stephanspl., 1010, Wien, Austria)

Place 4: Area including MERKUR Ihr Markt (Zwerchäckerweg 20 - 24, 1220, Wien, Austria)

Place 5: Area including S Traisengasse (Traisengasse, 1200, Wien, Austria)


Place 6: Area including IKEA (Sverigestr. 1a, 1220, Wien, Austria) , IKEA Restaurant (IKEA, Sverigestraße 1a, 1220, Wien, Austria)

Place 7: Area including TU Wien Mensa (Wiedner Hauptstr. 8-10, TU Wien Freihaus, 1040, Wien, Austria) , TU Wien Freihaus (Wiedner Hauptstraße 8-10, 1040, Wien, Austria) , Universitätsbibliothek der Technischen Universität Wien (Resselgasse 4, TU Wien, 1040, Wien, Austria) ,...

Place 8: Area including Erzherzog-Johann-Platz (Erzherzog-Johann-Platz, 1040, Wien, Austria) , Fachschaft Geodäsie (Austria) , TU Wien Neues EI (Gusshausstraße 24-29, 1040, Wien, Austria)

3.3 Results

The Mean values of p for Different Rankings

- Able to rank individual familiarity with places
- Positive association, but not strong
 - Simple weighting scheme: differentiated weightings for tagging activities, different intensities of a same tagging activity
 - Limitation of Foursquare API: combination of different lcation-based social media

4. Conclusion and future work

- Using location-based social media is able to rank individual familiarity with places.
- Refining the weighting scheme
 - A deeper insight on the influencing factors of human familiarity with places
 - Natural Language Processing on the text descriptions
 - Training set and validation set
- Combination of different location-based social media
- A categorization of individual importance instead of a ranking

WIEN Crtography

Thank you very much for your attention!

