

A New Method for Improving Wi-Fi Based In-door Positioning Accuracy

Yuntian Brian Bai

alound to the the ty to to botton

SPACE Research Centre, School of Mathematical and Geospatial Sciences RMIT University, Australia

- Background
- Techniques for location tracking and positioning

Outline

- Common algorithms for location fingerprinting
- A new algorithm
- Test result
- Conclusion

- Location-based service (LBS) technologies have become an essential part of our daily lives
 - Global revenue of LBS will generate up to US\$127b by the end of 2014 (the report of Juniper Networks)
 - LBS output of China in 2013 yielded RMBY70b
- LBS technologies for outdoor free space are mature, e.g., usage of GPS, but for indoor environments or city canyons are problematic
- Increasing needs arise to locate and find people and objects in buildings/indoor-like environments
- Algorithm development for increasing the positioning accuracy is still desireable.

Wide Application Areas

Agriculture & forestry	Entertainment	Packaging	
Airports & aviation	Environmental protection	Public Services	
Automotive & parts	Finance & banking	Publishing & printing	
Business services	Food & drinking	Real estate	
Chemicals industry	Governance	Retail & wholesale	
Construction	Healthcare & medication	Security	
Consumer goods	Information technology	Stock raising	
Defence	Logistics	Telecommunications	
Education	Manufacturing	Transportation	
Energy & utilities	Media	Travel & leisure	

Techniques for Positioning/Location Tracking SPACE Research Centre

Measurement types

- Time of arrival (ToA)
- Time difference of arrival (TDoA)
- \succ Angle of arrival (AoA)
- Received signal strength indicator (RSSI)
- Location estimation methods
 - ➢ Cell of origin (CoO)
 - Distance-based \checkmark e.g., trilateration
 - Fingerprinting \checkmark pattern recognition)

Common Algorithms for Fingerprinting

- Probabilistic, e.g.,
 - ✓ Bayesian
- Deterministic, e.g.,
 - ✓ Nearest Neighbor (NN)
 - ✓ K-NN
 - ✓ Weighted KNN

 $p(l_x|o_x) = \frac{p(l_x) \cdot p(o_x|l_x)}{\sum_{i=1}^m p(l_i) \cdot p(o_y|l_i)}$

 $\operatorname{Min} \delta = \sqrt{\sum_{i=1}^{n} (S_i - S_{mi})^2}$

$$\mathbf{\delta} = \frac{1}{\mathbf{K}} * \sum_{i=1}^{k} \mathbf{\delta}_{i}$$

$$\delta = \sum_{i=1}^{k} (w_i * \delta_i)$$

where $(w_1 + w_2 + \dots + w_k) = 1$

✓ Our new algorithm

- Based on the NN algorithm
- For improving location accuracy on fingerprinting
- Findings used for our algorithm
 - A former test (test environment: 56 x 18.2 x 3.3 m³ space, 11 access points (APs) and 30 test points)
 - Findings: stronger signals presented more stability and more consistency. Therefore, our algorithm started from the surrounding APs with the strongest RSSI values observed, named the initial AP (AP_{init})

Distance Calculated from RSSI Observations (CISCO™)

 $d = 10^{\frac{TX_{PWR} - RX_{PWR} - LOSS_{TX} - LOSS_{RX} + GAIN_{TX} + GAIN_{RX} - PL_{1METRE} - s}{10n}}$

where,

- *d*: distance between the user and the associated AP in metres;
- *RX*_{*PWR*}: detected RSSI value from the user's smartphone in dB;
- *TX*_{*PWR*}: transmitter output power in dB;
- *Loss_{TX}:* sum of all transmitter-side cable and connector losses in dB;
- *Gain_{TX}*: transmitter-side antenna gain in dBi;
- *Loss_{RX}*: sum of all user-side cable and connector losses in dB;
- *Gain_{RX}*: user-side antenna gain in dBi;
- PL_{1Meter} : reference path loss for the distance of 1 meter and for the desired frequency, in dB;
- *n*: path loss exponent for the environment;
- s: standard deviation associated with the degree of shadow fading present in the environment.

Principle of the New Algorithm (1)

12/7/2014

Yuntian Brian Bai

UNIVERSITY SPACE Research Centre

Principle of the New Algorithm (2)

Averaging a few observations for each reference point (RP):

 $\bar{S}_{RPk} = (\overline{RSSI}_{RPk}^{AP1}, \overline{RSSI}_{RPk}^{AP2}, ..., \overline{RSSI}_{RPk}^{APn})$

User's P_{init} is determined by the RP with the minimum δ_k :

$$\delta_k = \sqrt{\sum_{i=1}^n \left(RSSI_{usr}^{APi} - \overline{RSSI}_{RPk}^{APi}\right)^2}$$

Principle of the New Algorithm (3)

 $\Delta d_1 = d_{1\text{est}} - \overline{d_{1\text{est}}}$

 $\Delta d_2 = d_{2\text{est}} - \overline{d_{2\text{est}}}$

Ē

$$r_{2} = D_{2} + \Delta d_{2}$$

$$r_{1} = \sqrt{(x - x_{init})^{2} + (y - y_{init})^{2}}$$

$$r_{2} = \sqrt{(x - x_{per})^{2} + (y - y_{per})^{2}}$$
Proper geometry configuration
$$P(x, y)$$

 $r_1 = D_1 + \Delta d_1$

True distance <i>D</i> (m)	Estimated distance $ar{d}$ (m)	Estimated distance d (m)	Δd = $d - \overline{d}$ (m)	r = D + ∆d	Final P(<i>x, y</i>)
D ₁ = 3.15	$\overline{d_1} = 1.50$	d ₁ = 1.25	$\Delta d_1 = -0.25$	r ₁ = 2.90	The nearer intersection point
$D_2 = 5.68$	$\overline{d_2} = 1.64$	d ₂ = 1.37	$\Delta d_2 = -0.28$	r ₂ = 5.40	of the circles $(r_1 \& r_2)$

Yuntian Brian Bai

Calculate the differences:

Δ

P(x, y

8

°18

AP4°06

AP 12

14 (m)

°05

5

4

3

0

Analysis of the Test Results

Statistics results of 30 test points calculated by:

$\delta_{RMS} = \frac{1}{m} \{ \sum_{k=1}^{m} [(x_k - x_{ek})^2 + (y_k - y_{ek})^2] \}$

UNIVERSITY

- A new method for indoor positioning is proposed
- The new method is based on the NN algorithm with an improvement on location accuracy of half a meter
- The differential approach provides a new way for systematic error elimination to improve position estimates

• Future work:

- ✓ 3D implementation
- ✓ investigation of the variation of RSSI observations from a particular AP at different times
- ✓ Accuracy comparasion between KNN, Weited-KNNS

Thank you!

Yuntianbrian.bai@rmit.edu.au