Speed-Up Heuristics for the Traffic Flow Estimation with Gaussian Process Regression

Thomas Liebig

technische universität dortmund

Fakultät Informatik Lehrstuhl für Künstliche Intelligenz

TU Dortmund

INSIGHT: Intelligent Synthesis and Real Time Response using Massive Streaming of Heterogeneous Data

Predicttive Segment Cost Estimation

- Predict future sensor readings with Spatio-Temporal Random Fields
 - [Piatkowski et al 13]

- Impute values for unobserved locations using Gaussian Process Regression
 - [Liebig et al 12]

Spatio-Temporal Random Field (STRF)

- Discrete model of spatiotemporal values
- Spatial graph G₀ of the sensors generates measurements
- □ Joint measurements create a temporal chain $G_1 - G_2 - G_3$... every G_i replicates the structure of G_0

Spatio-Temporal Random Field (STRF)

- Parts are connected by spatio-temporal edges (adjacent vertices in t-1, t, t+1)
- Induces generative probabilistic graphical model
- Allows prediction of maximum-a-posterior (MAP) estimates

Predicttive Segment Cost Estimation

- Predict future sensor readings with Spatio-Temporal Random **Fields**
 - [Piatkowski et al 13]

- Impute values for unobserved locations using Gaussian **Process Regression**
 - [Liebig et al 12]

Gaussian Process Regression

Distribution between observed sensors depends on

- distance,
- path distance,
- centrality of the sensors,
- or others
- \Box Shape is defined by kernel function $_{\wedge}$
- Presumption: Multivariate Gaussian distribution

Gaussian Process

$$y_{i} = f_{i} + \epsilon_{i}, \epsilon_{i} \sim \mathcal{N}(0, \sigma^{2})$$
$$P(\mathbf{f}|\mathbf{X}) = \mathcal{N}(0, K)$$
$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_{u} \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} \hat{K}_{-u,-u} + \sigma^{2}I & \hat{K}_{-u,u} \\ \hat{K}_{u,-u} & \hat{K}_{u,u} \end{bmatrix} \right)$$

Apply regularized laplacian kernel

$$K = \left[\beta(L + I/\alpha^2)\right]^{-1}$$

Tested also multivariate log-normality of the values using Mardia test

Speed Up Heuristic for Traffic Model

□But, there exist far dependencies among the locations [Liebig 08]. e.g. Structure of a Bayesian Network on Hamburg:

- Imany possible neighbourhoods to chose from
 - spatial,
 - shortest path,
 - attributes (street name, lanes, ...) [May et al 08]
 - correlations in real trajectories

Turning the Models into Predictors

□ Aggregation

- Nodes: 7-Nearest neighbour graph among SCATS sensors
- Traffic: 1 of 6 intervals
- Time: 1 of 48 time slices for a 24 hour day
- Training instances: January till March'12; Test: April
- Test for prerequisites: multivariate normal distribution
- We estimate the traffic flux at 5000 locations among the city for easy tractibility

STRF - Aggregation

Intelligent Synthesis and Real Time Response using Massive Streaming of Heterogeneous Data

Application: Situation Aware Trip Planner

INSIGHT

Interface to OpenTripPlanner (OTP)

- OTP supports multimodal trip planning, traffic network derived by OpenStreetMap (vehicular routing not advisable)
- □ OTP calculates trip with A*
- □ OTP queries for cost at (location, time)
- □ Traffic Prediction Service (STRF, Gaussian PR) estimates the cost

Interface:

Traffic Flow Prediction

Java RMI interface to a persistent service of the streams framework [Bockermann,Blom 12]

User Interface

Example

Applied to 8th April at different times

Summary

- Spatio-temporal traffic cost predictions
 - Spatio-Temporal Random Fields
 - Gaussian Process Regression
- Prediction as service in the streams framework
- □ OpenTripPlanner exploits traffic estimates for trip calculation
- \rightarrow situation aware Trip Planner

Next steps

- \Box Event detection by comparison of prediction with current measurement \rightarrow SCATS ISA
- Enhancing through bus data
- Enhancing through crowd-sourcing component

Speed-Up Heuristics for the **Traffic Flow Estimation with Gaussian Process Regression**

technische universität dortmund

Fakultät Informatik Lehrstuhl für Künstliche Intelligenz

Thomas Liebig

TU Dortmund

INSIGHT: Intelligent Synthesis and Real Time Response using Massive Streaming of Heterogeneous Data 18

Spatio-Temporal Random Fields

[Piatkowski et al 13]

- \Box Spatial graph G₀ of the sensors generates measurements
- □ Joint measurements create a temporal chain $G_1 - G_2 - G_3$... every G_i replicates the structure of G_0
- Parts are connected by spatio-temporal edges (adjacent vertices in t-1, t, t+1)

G_{t-1}

- Induces generative probabilistic graphical model
- □Allows prediction of maximum-a-posterior (MAP) estimates

Spatio-Temporal Random Fields (STRF)

[Piatkowski et al 13]

INSIGH

□Full joint probability mass function:

$$p_{\theta}(\boldsymbol{X} = \boldsymbol{x}) = \frac{1}{\Psi(\theta)} \prod_{v \in V} \psi_{v}(\boldsymbol{x}) \prod_{(v,w) \in E} \psi_{(v,w)}(\boldsymbol{x})$$

Weight for every
state of the sensor and time i in [1..T]
$$\psi_{v}(\boldsymbol{x}) = \psi_{s(t)}(\boldsymbol{x}) = \exp\left\langle \sum_{i=1}^{t} \frac{1}{t-i+1} \mathbb{Z}_{s,i}, \frac{\phi_{s(t)}(\boldsymbol{x})}{\varphi_{s(t)}(\boldsymbol{x})} \right\rangle$$

\Box Regularized MLE for parameter estimation

MAP estimates

$$\hat{\boldsymbol{x}} = \arg \max_{\boldsymbol{x}_{V \setminus U} \in \mathcal{X}} p_{\boldsymbol{\theta}}(\boldsymbol{x}_{V \setminus U} \mid \boldsymbol{x}_{U})$$

[Liebig et al 12]

Image: Imag

$$\begin{split} \mathbf{y} &= f(\mathbf{x}) + \epsilon, \ \epsilon \sim \mathcal{N}(0, \sigma_n^2) \\ f(\mathbf{x}) \sim \mathcal{GP}(0, K) \\ \mathcal{K}(x_i, x_i) &= COV(y_i, y_i) \end{split}$$

□Vector of traffic flux **y** is multivariate normal distributed (we test this by Mardia test)

$$\begin{bmatrix} \mathbf{y}_{s} \\ \mathbf{y}_{u} \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} K_{s,s} + \sigma_{n}^{2}I & K_{s,u} \\ K_{u,s} & K_{u,u} \end{bmatrix} \right)$$

[Liebig et al 12]

Conditional probability distribution of \mathbf{y}_u for given evidence \mathbf{y}_s at measurement locations x_s

$$P(\mathbf{y}_{u}|x_{u}, x_{s}, \mathbf{y}_{s}) \sim \mathcal{N}(\mu, \sigma^{2})$$

$$\mu = K_{u,s}(K_{s,s} + \sigma_{n}^{2}I)^{-1} \mathbf{y}_{s}$$

$$\sigma^{2} = K_{u,u} - K_{u,s}(K_{s,s} + \sigma_{n}^{2}I)^{-1} K_{s,u}$$

□We apply Regularized Laplacian Kernel, works also well in [Liebig et. al. 12]

$$K = \left[\beta(L + I/\alpha^2)\right]^{-1}$$

□Hyperparameters are found by grid search = 0.5