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Abstract. Proliferation of pervasive devices capturing sensible data 
streams, e.g. mobility records, raise concerns on individual privacy. Even if 
the data is aggregated at a central server, location data may identify a par-
ticular person. Thus, the transmitted data must be guarded against re-
identification and an un-trusted server. This paper overcomes limitations of 
previous works and provides a privacy preserving aggregation framework 
for distributed data streams. Individual location data is obfuscated to the 
server and just aggregates of k persons can be processed. This is ensured by 
use of Pailler's homomorphic encryption framework and Shamir's secret 
sharing procedure. In result we obtain anonymous unification of the data 
streams in an un-trusted environment.  

Keywords. Privacy Preserving Big Data Collection, Mobility Analysis, Dis-
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1. Introduction 

Smartphones became a convenient way to communicate and access infor-
mation. With the integration of GPS sensors mobility mining was pushed 
forward (Giannotti & Pedreschi, 2008). The mobility information of multi-
ple devices is usually stored on a server which performs analysis in order to 
extract knowledge on the movement behavior. In the easiest case this is the 
number of visitors to dedicated places, compare Figure 1.  
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Figure 1: Centralized Mobility Data Analysis 

The processing of the data streams became infeasible for large use cases, 
where millions of people are monitored, and massive data streams have to 
be processed. In this Big Data scenarios, the expensive computation 
(matching and counting in individual, continuous GPS streams) is split 
among the parties and just the aggregation step remains in the server. Thus, 
the continuous movement records (GPS) are reduced to episodic movement 
data (Andrienko et. al. 2012) consisting of geo-referenced events and their 
aggregates: number of people visiting a certain location, number of people 
moving from one location to another one, and so on. The preprocessing of 
the GPS data streams is then locally embedded in the location based devices 
and the aggregation is subject to crowd sourcing. Recent work focuses on 
in-situ analysis to monitor location based events (visits (Kopp et. al. 2012), 
moves (Hoh et. al. 2012)) or even more complex movement patterns 
(Florescu et. al. 2012) in GPS streams. In all cases a database with the loca-
tions or patterns of interest is provided in advance, and the mobile device 
computes event-histograms for succeeding time-slices. These histograms 
are much smaller and may be aggregated by the server in order to achieve 
knowledge on current movement behavior, compare Figure 2. 

However, the transmission of these individual movement behaviors still 
poses privacy risks. The devices monitor daily behavior and thus reveal 
working place and hours, the place where we spent the night and other loca-
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tions indicating information on sensitive subjects as health, religion, politi-
cal opinions, sexual orientation, etc. Thus, the transferred episodic move-
ment data may even lead to re-identifications.  

Figure 2: Aggregation of Distributed mobility Data Streams 

The problem we thus focus is the protection of the individual histogram in 
such a data stream of locally aggregated mobility events. The adversary 
model is a corrupted server that utilizes the received individual histogram 
for inferences on the identities and other sensitive data. 

Existing methods either act on the network layer (Kopp et. al. 2012) or in-
spired by the differential privacy paradigm they add random noise 
(Monreale et. al. 2013). The work in (Clifton et. al . 2004) denotes a proto-
col for secure aggregation among multiple parties, but their algorithm re-
quires extensive communication among the parties and is infeasible in the 
considered crowd sourcing (i.e. single server) scenario, also their encryp-
tion can be broken after several computation cycles. 

In contrast, our approach bases on homomorphic crypto systems (Paillier, 
1999). These are systems where the decryption of several multiplied en-
crypted values reveals the sum of the original messages. Similarly to the 
RSA algorithm (Rivest et. al. 1983), the system, based on (Damgard & Jurik, 
2001), uses one-way encryption functions to protect the messages. Thus a 
public key is used for encryption and a secret private key will be used for 
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decryption. We share the secret key among the clients in the network using 
hamir's secret sharing scheme (Shamir, 1979). The temporal entanglement 
of the messages is prevented using a one-way hash as in (Lamport, 1981). 

The paper proceeds with a detailed discussion of latest work that tackle the 
described problem. Afterwards our approach is presented in conjunction 
with preliminaries on crypto systems. However, our approach poses new 
requirements to the architecture from Figure 2, which are briefly discussed 
afterwards. We conclude with a discussion of our achievements and an out-
look on future research. 

2. Related Work 

The problem to protect individual privacy in a distributed scenario with an 
untrusted server receives increasing importance with the spread of Big Data 
architectures and the wide availability of massive mobility data streams.  
Thus, the problem is subject of many recent publications. 

The work in (Abul et. Al. 2008) computes k-anonymity and assumes a 
trusted server. The work from (Kopp et. al. 2012) tries to solve the un-
trusted server problem by introduction of an obfuscation layer in the net-
work communication, see Figure 3. But individual location data is identify-
ing, even if it is aggregated in space-time compounds (Monreale et. al. 
2010). Therefore, this work still delivers the vulnerable data to the server. 
Recently, differential privacy was applied to the problem in (Monreale et. 
al. 2013). Originated in database theory, differential privacy implies that 
adding or deleting a single record to a database does not significantly affect 
the answer to a query (Dwork et. al. 2006). The work in (Monreale et. al. 
2013) follows the common method to achieve differential privacy by adding 
Laplace noise (with the probability density function                
 

  
  

     

  , where   is set to zero and  =1/ ) to every flow value in the vector, 
as proposed in (Dwork et. al. 2006), compare Figure 4.However, for cell 
counts differential privacy is known to provide strange behavior, especially 
if a large number of cells are zero (Muralidhar & Sarathy, 2011).  
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Figure 3: Obfuscated Communication 

Figure 4: Differential Privacy 
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Moreover, movement often is a routine behavior and within their consid-
ered time interval most likely similar counts are produced for every person, 
this offers a chance to extract the mean and thus the correct value of the 
distribution within a stream environment (Duan, 2009) as the noise is 
sampled from            instead of sampling from           , where   
denotes the expected number of queries. Additionally, movement is not 
random, and thus the frequencies in the vector are not independent, but 
correlate (Liebig et. al. 2008, Liebig et. al. 2009). Thus, combination of var-
ious noisy replies may be utilized to reveal the true distributions. 

In contrast, our approach based on homomorphic cryptology in conjunction 
with a shared key ensures that individual data may not be accessed by the 
server but only aggregates of at least   people can be used, Since   may 
equal the number of clients, no data on the individual persons need to be 
revealed. 

3. Proposed Cryptographic Approach 

In contrast to previously described approaches our method (1) encrypts the 
values of the histogram, (2) communicates these ciphertexts to the server, 
(3) aggregates the ciphertexts and finally (4) decrypts the result, see an 
overview in Figure 5. The process utilizes asymmetric cryptography meth-
ods using two separate keys: one for encryption and another one for decryp-
tion. The utilization of a homomorphic crypto system in conjunction with 
Shamir's secret sharing guarantees that the individual messages cannot be 
restored, but their sum. 

 

 

 

 

 

 

 

 

 

 

LBS 2014

Page 91



Figure 5: Proposed Cryptographic Approach for Privacy Preserving Aggre-
gation of Distributed Mobility Data Streams 

As our method bases on the RSA-method (Rivest et. al. 1983), 
homomorphic crypto systems (Paillier, 1999), (Damgaard & Jurik, 2001), 
Shamir's secret sharing (Shamir, 1979) and the work on hash chains, de-
scribed in (Lamport, 1981), we proceed with a brief primer and describe our 
method afterwards. 

The RSA-algorithm (Rivest et. al. 1983) is an asymmetric crypto system. 
The system bases on two keys, a private key which is used for decryption 
and a public key used for encryption. Whilst the public key can be shared 
with multiple parties, the private key is the secret of the receiver, and may 
hardly be computed from the public key. 

3.1. RSA Algorithm 

The RSA method uses one-way functions. These are functions which are 
easy to compute in one direction but difficult to reverse. A simple metaphor 
of this function is a phone book: While it is easy to derive the call number of 
a particular person, it is hard to look up the name given a phone number.  

Preliminary for understanding is the notion of multiplicative inverse   of a 
number  , which is defined as            . This inverse just exists, if   
and   are co-prime, i.e.           . 
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Consider a communication among the client who wants to send a message 
to the server. In this case, the system works as follows. In a key generation 
process, the server chooses two different primes   and   and computes 
     and             . Furthermore, the server chooses a number 
  which is co-prime to  . The public key, created by the server, then de-
notes as         . The server computes the multiplicative inverse 
           of  , which is the secret private key. 

Encryption 

The client has a message  , with    . He sends the ciphertext  , comput-
ed as             mod   . 

Decryption: 

The server decrypts the message and restores the plaintext by computing 

                 . 

The system is secure, as knowledge of   does not reveal   and  , since fac-
torization is in NP (Johnson, 1984). 

3.2. Homomorphic Crypto Systems 

A public key encryption scheme      , where   and   are algorithms for 
encryption and decryption, is homomorphic when it meets the condition 
                    . 

Our approach bases on the generalisation of Paillier's public-key system 
(Paillier, 1999), introduced in (Damgaard & Jurik, 2001). Their crypto sys-
tem uses computations modulo        , with   being the RSA modulus 
and   a natural number. By setting     Paillier's scheme is a special case 
(Paillier, 1999). If      with   and   being odd primes, then the multipli-
cative group  

      
  is a direct product of    , where   is of cyclic order    

and  is isomorphic to   
 . Thus,     = 

      
    is cyclic of order   .  

For an arbitrary element    
      
 ,  =   =a   denotes the element repre-

sented by   in the factor group   . 

Choose    
      
  such that                    for known   relatively 

prime to   and      . Let   be the least common multiplier of     and 
   ,                . Choose   by the Chinese Remainder Theorem, 
such that             

  and          . The public key then is     whilst 
the secret key is  . 

Encryption: 

The plaintext   is element of    
 . With a plaintext   we choose at random 

  in  
      
 . The ciphertext        computes as: 
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             . 

Decryption: 

For the ciphertext   compute     mod        . If          this results 
in 

         
 
 
 
         

                  
  
 
 

 
                  

      
   

         
 

                         

In (Damgaard & Jurik, 2001) an algorithm is proposed to compute 
           . Their method bases on a function              which en-
sures that  

                          
 
       

 
               . 

The basic idea of their algorithm is to compute the value iteratively in a loop 
For convenience, their algorithm is cited in Algorithm 1. 

With the same method computed for   instead of   the value           is 
computed. The plaintext then is: 

                       . 

 

     

For      to   

                     

     

For      to   

       

                

        
     

      

  
        

ENDFOR 

      

ENDFOR 

Algorithm 1: Damgard Jurik Algorithm (Damgaard & Jurik, 2001) 

The crypto system is additively homomorphic. As example consider two 
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messages    and    which are encrypted using the same public key    
such that                     and                     then       
     

    
    

    

           
  

so                          . 

3.3. Shamir's Secret Sharing 

The work presented in (Shamir, 1979) discusses how to distribute a secret 
value   among   parties, such that at least   parties are required for restor-
ing the secret.  

The idea utilizes a polynomial function          
    

   ,with     , and 
distributes the values      to the parties. 

In case   of these values are commonly known, the polynomial      can be 
restored.  

The advantage of this method is that the shared parts are not larger than 
the original data. By some deploying strategies of the parts hierarchical en-
cryption protocols are also possible. 

3.4. Hash Chain 

The work in (Lamport, 1981) describes a method for authentication with 
temporally changing password messages. The passwords series are created 
in advance using a cryptographic hash function which is a one-way function 
    . They are created as follows                   , where   is a pass-
word seed. The passwords are used in reversed order. Thus, the server 
stores the last value that the client sent,      , and proves correctness of 
the new value         by verification of                 . Afterwards 
the server stores the latest received value for the next check. As      is a 
one-way function, the server may not pre-compute next password. 

3.5. Putting Things Together 

Our cryptographic system follows the protocol of the homomorphic crypto 
system in (Damgaard & Jurik, 2001). Consider communication among   
clients with a single server. Similar to (Damgaard & Jurik, 2001) key gener-
ation starts with two primes   and   which are composed as         and 
       , where    and    are also primes but different from   and  . The 
RSA modulus   is set to      and       . With some decision for     
the plaintext space becomes    . Next,   is chosen such that           
and           . Now, we use Shamir's secret sharing scheme (Shamir, 
1979) to generate the private key shares of   to be divided among the cli-
ents. Thus, we apply the polynomial          

  
        , by picking    

for         as random values from       and     ,   is a prime with 
      . We choose   as      . The secret share of   for the  'th client 
will be        . A verification key                   is associated with 
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each client  . The public key then becomes         and           is a set of 
private key shares. 

Encryption: 

 The plaintext of the  th client     is multiplied with the one-way hash func-
tion               of a commonly known seed  . Thus the plaintext for 
the encryption results as       

   . Given this plaintext    we choose at 
random          

 . The ciphertext         computes as: 

                              . 

The client   then communicates   
     , with      (Damgaard & Jurik, 

2001). 

Decryption: 

The server can verify that the client raised    in the encryption step by test-
ing for      

    
           . After the required   number of shares   ar-

rived. They can be combined to (Damgaard & Jurik, 2001): 

      
 

     
 

                  , where  

    
    

  

             .  

Thus, the value of    has the form                 
                   

  . As 
             and                ,           

                   . 
The desired plaintext           can be obtained by previously introduced 
algorithm and succeeding multiplication with               . The original 
plaintext can be computed by dividing the resulting sum by   . This en-
sures that previous messages may not be used for analysis of current mes-
sages. The homomorphic property of the system is directly used, and bases 
on the work presented in (Damgaard & Jurik, 2001). 

Security: 

The security of the crypto system is based on the decisional composite 
residuosity assumption already used by (Paillier, 1999). The assumption 
states that given a composite   and an integer   it is hard to decide whether 
  is a  -residue (i.e. a  -th power) modulo   , i.e. whether it exists an   with 
             . 

4. Consequences for the Architecture 

As a consequence of our method the keys need to be distributed among the 
communicating parties: the clients and the server. This may not be done by 
the server, but has to be performed by a (commonly) trusted authority (TA). 
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Once the keys are distributed, the communication channel to this TA can be 
closed. Thus, no vulnerable data reaches this third party. 

5. Discussion 

The hereby presented method overcomes limitations of related work. In 
addition, our approach may be combined with the methods presented in 
(Monreale et. al. 2013). Thus, the transmitted histograms can be obfuscated 
by Laplacian noise (Monreale et. al. 2013). On the other hand transmission 
may not be obscured by anonymous messages (Kopp et. al. 2012) since the 
identifier of the clients is required for verification of the transmitted mes-
sages and reconstruction of the aggregated plaintext. 

However, our method assumes that the space covered by individual move-
ments overlaps. If this assumption does not hold, e.g. with persons from 
different cities, the privacy of each individual is not guaranteed (Abul et. al. 
2008). An approach to overcome this limitation is by sending messages to 
the server just if the according entry in the histogram is at least once (i.e. 
the person was at least once at this location or used at least once the move-
ment pattern). This ensures that the server may just decode the aggregated 
histogram if a sufficient number of people sent their messages and thus 
have been there. On the other hand, then the transmission of the message 
itself contains information on a person's movement behaviour. Thus, future 
studies should find a message encoding of a zero which does not allow to 
compute the aggregated sum but passes all verification steps of the server. 
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