Study and Simulations of an Angle of Arrival Localization System for Indoor Multipath Environments

Stijn Wielandt, Jean-Pierre Goemaere, Bart Nauwelaers, Lieven De Strycker
Outline

• Introduction
• Proposed system
• Virtual test bench
• Simulations:
 o Antenna array elements
 o AOA algorithms
• Conclusions
Introduction

• Indoor RF localization:
 o Received Signal Strength: RSS
 o Time (Difference) Of Arrival: T(D)OA

• Problems:
 o Ad hoc tuning
 o Multipath (non-line-of-sight)
 • Reflections
 • Scattering
 • Fading
 • ...
Proposed System

- Rectangular room with reflecting walls
- Omnidirectional mobile transmitter
- Receiving antenna array
 - Angle Of Arrival (AOA) estimation
 - Line of sight
 - Reflections
 - Ray tracing
 - Estimate Tx position
Virtual Test Bench

• Dimensioning & evaluating antenna array (ULA)
 o Number of elements
 o Inter element spacing (standard $\lambda/2$)
 o Operation frequency (standard 2.4 GHz or 5.8 GHz)
 o Antenna type (radiation pattern)
 o Impinging signals
 • Angle of arrival
 • Signal strength
 • Delay
 o AOA algorithms
 • Non-parametric: MVDR/Capon, Beamscan
 • Parametric: MUSIC, ESPRIT
 o Spatial smoothing
Simulations: array elements

- Evaluation of array response
- Incoming signal: 0° azimuth, 0° elevation
- 10 array elements with λ/2 interspacing
- Evaluated types:
 - Isotropic radiator
 - (half) wavelength dipole
 - Microstrip patch antenna
Simulations: array elements

- Isotropic & (half) wavelength dipoles:
 - Symmetry around 90° azimuth axis
 - Impossible to distinguish signals from front/back
Simulations: array elements

- Microstrip patch antenna
 - Less sensitive for signals at angles >45º
 - Receives no signals from the backside
Simulations: AOA algorithms

- Performance of AOA algorithms for reflections
- Influence of spatial smoothing (decorrelation)
- Test setup:
 - Incoming signal + reflection at 2 different angles
 - Search for smallest signal with correct AOA estimation

<table>
<thead>
<tr>
<th></th>
<th>Beamscan</th>
<th>MVDR</th>
<th>MUSIC</th>
<th>ESPRIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No spatial smoothing</td>
<td>-5.2 dB</td>
<td>-5.5 dB</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spatial smoothing</td>
<td>-6.6 dB</td>
<td>-53 dB</td>
<td>-63 dB</td>
<td>-55 dB</td>
</tr>
</tbody>
</table>
Simulations: AOA algorithms

• Beamscan performs worst
• MVDR performs well
• MUSIC & ESPRIT only perform well with spatial smoothing

<table>
<thead>
<tr>
<th></th>
<th>Beamscan</th>
<th>MVDR</th>
<th>MUSIC</th>
<th>ESPRIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No spatial smoothing</td>
<td>-5.2 dB</td>
<td>-5.5 dB</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spatial smoothing</td>
<td>-6.6 dB</td>
<td>-53 dB</td>
<td>-63 dB</td>
<td>-55 dB</td>
</tr>
</tbody>
</table>
Simulations: AOA algorithms

- Example: MVDR before & after spatial smoothing
Conclusions

• New type of indoor positioning system: AOA + ray tracing
• Virtual test bench for evaluation & dimensioning
• Microstrip patch antennas are the best option
• Spatial smoothing is necessary for AOA of reflections
• MVDR has an overall good performance
Thank you for your attention!

Questions?